
NLP for me

Part 5 - Deep Learning for Natural Language

Monday, November 4th, 2024

PWYC Microcourse in Natural Language Processing
October 2024

nlpfor.me

https://www.nlpfromscratch.com
http://nlpfor.me


Neural Network 
Fundamentals

https://www.nlpfromscratch.com


What is Deep Learning?
Deep Learning is a specialized type of machine learning 
that takes motivations from the structure of the human 
brain.

Unlike other machine learning models, deep learning 
models - or artificial neural networks - are composed of 
many nodes which can be viewed as individual 
"sub-models"

The theoretical foundations for deep learning have 
existed since the 1960s (or even earlier), but it only 
recently been realized with the rise of inexpensive and 
powerful computing available at scale.

In NLP, deep learning models form the basis for 
state-of-the-art large language models (LLMs).

https://www.nlpfromscratch.com


A Neuron in the 
Brain
The human brain is composed of billions of 
neurons, electrically excitable cells 
composed of a cell body, dendrites, an 
axon, and terminal.

Neurons receive input through their 
dendrites, and when firing, an electrical 
impulse travels down the axon to the 
terminal and release 
neurotransmitters to the next cell.

https://www.nlpfromscratch.com


Image from: 
https://deepai.org/machine-learning-glossary-and-terms/perceptron

An Artificial Neuron (Perceptron)
An artificial neuron, referred to as a perceptron, is 
structured similarly: inputs to the model are the 
data plus a constant which are then multiplied by 
a set of weights (corresponding to dendrites in a 
physical neuron).

These together make a weighted sum of the 
inputs, which are processed through an activation 
function producing the perceptron output or 
activation, analogous to the axon and terminal in a 
physical neuron firing.

Many perceptrons combined together make up 
what was historically referred to as a Multilayer 
Perceptron (MLP) that we now refer to as a 
feed-forward, or fully connected, neural network.

Activation
Function

https://www.nlpfromscratch.com
https://deepai.org/machine-learning-glossary-and-terms/perceptron


Multiple perceptrons are put together into 

layers composed of nodes (each perceptron) 

to create a neural network.

The outputs, or activations, which come out 

of previous layers become the inputs of the 

following layer.

The number of layers and number of nodes 

in the network - known as its architecture - is 

arbitrary and up to the modeler. There are 

also specific architectures that are well 

suited to particular types of problems.

Image from: https://alexlenail.me/NN-SVG/

Structure of A 
Neural Network

https://www.nlpfromscratch.com
https://alexlenail.me/NN-SVG/


Structure of A 
Neural Network

Multiple perceptrons are put together into 

layers composed of nodes (each perceptron) 

to create a neural network.

The outputs, or activations, which come out 

of previous layers become the inputs of the 

following layer.

The number of layers and number of nodes 

in the network - known as its architecture - is 

arbitrary and up to the modeler. There are 

also specific architectures that are well 

suited to particular types of problems.

Image from: https://alexlenail.me/NN-SVG/

https://www.nlpfromscratch.com
https://alexlenail.me/NN-SVG/


The input layer is not a “true” layer but just 
passes the data through to the following 
layers - we say either that there is no 
activation or that the activation function here 
is a linear passthrough (the function y = x).

Each neuron in the input layer represents a 
feature of the data, so there will be an equal 
number of nodes in the input layer as there 
are features in the data.

For example, the neural network depicted on 
the right could be used to make predictions if 
we tabular data with 16 features (columns) 
describing each observations (row) in the 
dataset.

Input Layer

https://www.nlpfromscratch.com


On the other hand, the output layer is the final 

layer of a neural network that produces the 

network's predictions (output). The number of 

nodes in the output layer is dependent on the 

problem type. 

A single node can be used for binary 

classification or regression, since for each 

observation of input there will only be one 

output: a probability between 0 and 1 of lying 

in the positive class (class 1) in the case of 

binary classification, and a single numeric 

value in the case of regression - predicting a 

continuous value associated with each 

observation of the input data.

For multiclass classification, the number of 

nodes in the output layer will equal the 

number of classes, and the outputs will be a 

probability of lying in each corresponding 

class (which will all add up to 1 or 100%).

Output Layer

https://www.nlpfromscratch.com


The intermediate layers between the input 
and output of the network are the so-called 
hidden layers.

Each hidden layers perform computations on 
outputs of previous layer, a linear combination 
of these multiplied by coefficients - or weights. 
The activation function is then applied to this 
result. The weights are what is learned by the 
model in training.

Here we are speaking only of fully-connected 
(feed-forward) networks, the simplest type of 
neural network. There are other layer types 
for different types of models specifically 
suited to certain types of tasks (e.g. computer 
vision)

Hidden Layers

https://www.nlpfromscratch.com


The ability for neural networks to learn highly 
complex, non-linear relationships is greatly due 
to activation functions. As these are applied at 
each layer, as the information flows through the 
network from left to right, the functions are 
applied atop one another in previous outputs.

Each layer may have a different type of 
activation function, though it is not uncommon 
to use the same for most, if not all of the layers. 
Again, these choices are up to the modeler.

There exist families of well-known mathematical 
functions that perform well and have desirable 
mathematical properties and serve as standard 
choices to use when training deep learning 
models.

Image source: https://machine-learning.paperspace.com/wiki/activation-function

Activation Functions

https://www.nlpfromscratch.com
https://machine-learning.paperspace.com/wiki/activation-function


Every neural network also has a loss function. This is just a 
technical term for a function which measures the model's 
error. They compares the values output from the network to 
those expected or known to compute the error. 

Depending on the type of problem the network is being 
applied to, there are different families of loss functions 
which are used.

Any machine learning model is never "right" - it is only less 
wrong, and the goal of training a neural network is to find 
the optimal values for the weights such that the loss (error) 
is minimized.

But how do we find these values for the weights? That brings 
us to the details of how neural networks are trained.

Loss Functions

https://www.nlpfromscratch.com


The details of how neural networks are trained 
and the optimal values for the model weights 
found are quite mathematically complex.

At a high level, it can be viewed as an optimization 
problem where we want to minimize the error 
(loss) as a function of how much we should change 
the weights.

Imagine you wish to find the lowest point in a 
mountain range - which way should you walk to 
make the steepest descent and reach the bottom?

Analogously, there are numerical methods which 
can perform computations over many millions of 
parameters in a neural network to determine how 
to adjust the weights to those which minimize the 
error.

Image from: 
https://www.mygreatlearning.com/academy/learn-fo
r-free/courses/stochastic-gradient-descent

How do Neural Networks Learn?

https://www.nlpfromscratch.com
https://www.mygreatlearning.com/academy/learn-for-free/courses/stochastic-gradient-descent
https://www.mygreatlearning.com/academy/learn-for-free/courses/stochastic-gradient-descent


This logic is applied during neural network training. 
Unlike other types of machine learning models, 
neural networks are trained in two steps which are 
repeated many times.

In the forward pass, data is run through the network 
to compute the output, and error calculated from 
the loss function comparing this output against the 
known true value associated with the input.

Backpropagation (“backprop”) follows, and applies 
changes to weights' values in the network as 
determined from gradients, or slopes, the direction 
of greatest decrease of error.

Forward Pass (Perform calculations)

Backprop (Update weights)

Training 
Data

Loss 
& 

Gradients

Forward Pass and Backpropagation

https://www.nlpfromscratch.com


In addition to differing from other types of machine 
learning based on these two steps, deep learning also 
differs in that data is not passed through the network 
once in its entirety, but in smaller subsets known as 
batches.

When all the data has gone through the network once, 
this is referred to as a single epoch of training

One epoch is composed of many batches, and networks 
are trained for many epochs and see the whole training 
dataset multiple, even hundreds or thousands of times, 
depending on the problem.

With each epoch of training, the model weights are 
adjusted and the network better learns the relationships 
between the features and target variable.

Epochs and Batches

https://www.nlpfromscratch.com


• Google product

• Graph-based computation, GPU training

• Other deployment options (Tensorflow Lite, 

TF.js)

• Easy with integration of Keras into TF 2.x

• Facebook product

• Graph-based computation, GPU training

• Pytorch Mobile for embedded, no web (ONNX?)

• OOP dev focus (ML eng), Lightning equivalent to 

Keras

(Python) Neural Network Frameworks

https://www.nlpfromscratch.com


Deep Learning 
for Language

https://www.nlpfromscratch.com


Recurrent Neural Networks
● Designed for sequence data, where each output depends on prior 

inputs (recurrence), making them useful for tasks like text, speech, and 
time-series analysis.

● RNNs address sequential dependencies that traditional neural 
networks do not

● Developed in 1980s, RNNs evolved with improvements like LSTM 
(1997) and GRU (2014) cells to overcome memory and computational 
limitations and enable longer dependency learning

● RNNs capture linguistic patterns over time, generating coherent 
sentences or paragraphs based on learned language structure - e.g. 
character-level and word-level RNN text generation

Image credit:. geeksforgeeks.org/introduction-to-recurrent-neural-network

https://www.nlpfromscratch.com
http://geeksforgeeks.org/introduction-to-recurrent-neural-network


Recurrent Neural Network Types (Cells)

RNN LSTM GRU

https://www.nlpfromscratch.com


Bidirectional LSTM

https://www.nlpfromscratch.com


Applications of RNNs

Time Series 
Forecasting

Audio & Video 
Processing

Text 
Generation

Translation & 
Summarization

AB
CD

https://www.nlpfromscratch.com


The Transformer Architecture
● Groundbreaking paper "Attention is All You Need" 

from Google researchers (Vaswani et al, 2017) 
introduced Transformer architecture

● Original application in machine translation but now 
general purpose and applied to a myriad of other 
tasks

● Represents the state of the art for LLMs and also 
applied in domains outside of language (image 
generation) - virtually all new models based on this 
architecture

● Popularized by OpenAI and the Generative 
Pretrained Transformer (GPT) series of models

https://www.nlpfromscratch.com
https://arxiv.org/abs/1706.03762


https://www.nlpfromscratch.com


ENCODER 
(e.g. BERT)

DECODER 
(e.g. GPT)

https://www.nlpfromscratch.com


FREE!

End of Part 5

Part 5 - Deep Learning for Natural Language

Monday, November 4th, 2024

NLPfor.me
PWYC Microcourse in Natural Language Processing

October 2024

nlpfor.me

https://www.nlpfromscratch.com
http://nlpfor.me
http://nlpfor.me

